Welcome to this series of blog posts which covers Redis Streams with the help of a practical example. We will use a sample application to make Twitter data available for search and query in real-time. RediSearch and Redis Streams serve as the backbone of this solution that consists of several co-operating components, each of which will we covered in a dedicated blog post.
The code is available in this GitHub repo - https://github.com/abhirockzz/redis-streams-in-action
We will continue from where we left off in the previous blog post and see how to build a monitoring app to make the overall system more robust in the face of high load or failure scenarios. This is because our very often, data processing applications either slow down (due to high data volumes) or may even crash/stop due to circumstances beyond our control. If this happens with our Tweets processing application, the messages that were assigned to a specific instance will be left unprocessed. The monitoring component covered in this blog post, checks pending Tweets (using XPENDING
), claims (XCLAIM
), processes (store them as HASH
using HSET
) and finally acknowledges them (XACK
).